Coral reef conservation genomics

Mesophotic coral ecosystems (MCEs) are light-dependent coral communities that occur at depths beyond regular diving limits (~30-150 m). Although these communities can occupy areas equivalent to that of shallow reefs, they remain largely undocumented and are often not considered in conservation planning. I am interested in characterising the ecology and biodiversity of these ecosystems, and evaluating their vulnerability in the context of a rapidly changing environment.

Mesophotic coral ecosystems

Mesophotic coral ecosystems (MCEs) are light-dependent coral communities that occur at depths beyond regular diving limits (~30-150 m). Although these communities can occupy areas equivalent to that of shallow reefs, they remain largely undocumented and are often not considered in conservation planning. I am interested in characterising the ecology and biodiversity of these ecosystems, and evaluating their vulnerability in the context of a rapidly changing environment.

Adaptation of corals to rapid environmental change

Tropical scleractinian corals can be found across a broad depth range, spanning a wide range of different underwater habitats. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however the underlying mechanisms remain poorly understood. By studying patterns of genetic and phenotypic divergence across distinct reef habitats, I aim to identify the ecological drivers and genomic mechanisms underlying the diversification of scleractinian corals and their associated endosymbionts on tropical reefs.

Understanding coral reef biodiversity

Our understanding of coral biodiversity on tropical reefs has been greatly hampered by the difficulty of accurate in situ taxonomic identification and the fact that species within many genera remain unresolved. While there has been a traditional lack of informative genetic markers for corals, the emergence of massively parallel sequencing approaches allow us to tackle these issues.

 
 

Photo by Kathryn Whitney - California Academy of Sciences